Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles.

نویسندگان

  • J A Leary
  • K Biemann
  • A L Lafleur
  • E L Kruzel
  • G P Prado
  • J P Longwell
  • W A Peters
چکیده

Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low smoke samples (8). Oxygen-containing PAH, typified by phenalene-1-one and its alkyl derivatives, are important mutagens from cyclic firing at high smoke conditions. Thus, oil burner effluents differ markedly from those of several other combustors, including the automotive diesel engine, where multiring PAH, typified by fluoranthene and alkylated phenanthrenes, account for a significant portion of the effluent mutagenicity. Implications for combustion and emissions source identification are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical and toxicological characterization of residential oil burner emissions: II. Mutagenic, tumorigenic, and potential teratogenic activity.

Extracts of effluents from a modern residential oil burner have been evaluated in several toxicological assay systems. Bacterial mutagens were detected in extracts from both the particulate and vapor phase emissions. Effluents from continuous operation were an order of magnitude less mutagenic than those from cyclic (5 min on, 10 min off) operations. No difference in the yield of bacterial muta...

متن کامل

Characterization of a method for aerosol generation from heavy fuel oil (HFO) as an alternative to emissions from ship diesel engines

This work describes a laboratory method to synthesize aerosols with properties similar to those emitted by ocean going ships. In this method, an oxy-hydrogen flame burner nebulizes and combusts heavy fuel oil (HFO). The oil was fed to the burner via a syringe pump at a maximum rate of 15 ml/h. Adjusting the feed temperature of the oil and the use of a quenching ring in the burner, it is possibl...

متن کامل

Emission evaluation of CO2 and CH4 gases in the selected gas pressure booster station in the Bangestan field of the National Iranian Oil Company

Background: Iran is located in the seventh rank in terms of CO2 emissions resulting from the fuel combustion in the world. Gas compressor booster stations, due to the several sources of contaminants, are causing the release of large amounts of CO2 and CH4, which will cause climate change therefore, estimating the emissions of the gases from oil and gas, different processing units are necessary....

متن کامل

Sulfur dioxide emissions in Iran and environmental impacts of sulfur recovery plant in Tabriz Oil Refinery

Background: Combustion of fossil fuels contributes to sulfur dioxide (SO2) emissions. To deal with this issue, the government of Iran has appointed the oil refineries to upgrade their installations and produce high quality fuels. Thus, this study investigated the status of SO2 emissions in Iran and the capability of advanced technologies to control SO2 emissions. Methods: The status of SO2 em...

متن کامل

A technical and economic assessment of fuel oil hydrotreating technology for steam power plant SO2 and NOx emissions control

This work presents a simulation approach to the design and economic evaluation of fuel oil hydrotreating processes for the control of SO2 and NOx emission in an Iranian steam power plant. The percent of fuel oil desulphurization was estimated from the SO2 emissions standards for power plants. Based on two different scenarios according to (I) European and (II) Iranian standards, the design and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 73  شماره 

صفحات  -

تاریخ انتشار 1987